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Grid Sensitivity and Aerodynamic Optimization of
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An algorithm is developed to obtain the grid sensitivity with respect to design parameters for aerodynamic
optimization. The procedure is advocating a novel (geometrical) parameterization using spline functions such
as non-uniform rational B-splines for defining the airfoil geometry. An interactive algebraic grid generation
technique is employed to generate C-type grids around airfoils. The grid sensitivity of the domain with respect
to geometric design parameters has been obtained by direct differentiation of the grid equations. A hybrid
approach is proposed for more geometrically complex configurations such as a wing or fuselage. The aerodynamic
sensitivity coefficients are obtained by direct differentiation of the compressible two-dimensional thin-layer
Navier—Stokes equations. An optimization package has been introduced into the algorithm in order to optimize
the airfoil surface. Results demonstrate a substantially improved design due to maximized lift/drag ratio of the

airfoil.

1. Introduction

N essential element in design and optimization of aero-
dynamic surfaces is acquiring the sensitivity of aerody-
namic surface forces with respect to design parameters.'—?
Several methods concerning the derivation of sensitivity equa-
tions are currently available. Among the most frequently men-
tioned are direct differentiation (DD), adjoint variable (AV),
symbolic differentiation (SD), automatic differentiation (AD),
and finite difference (FD). Each technique has its own unique
characteristics. The DD, adopted in this study, has the ad-
vantage of being exact, due to direct differentiation of gov-
erning equations with respect to design parameters. There are
two basic components in obtaining aerodynamic sensitivity.
They are 1) obtaining the sensitivity of the governing equa-
tions with respect to the state variables and 2) obtaining the
sensitivity of the grid with respect to the design parameters.
The sensitivity of the state variables with respect to the design
parameters are described by a set of linear—algebraic rela-
tions. These systems of equations can be solved directly by a
lower—upper (LU) decomposition of the coefficient matrix.
This direct inversion procedure becomes extremely expensive
as the problem dimension increases. A hybrid approach of
an efficient banded matrix solver with the influence of off-
diagonal elements iterated can be implemented to overcome
this difficulty.>
After reviewing relevant literature, it is apparent that one
aspect of aerodynamic sensitivity analysis, namely grid sen-
sitivity, has not been investigated extensively. The grid sen-
sitivity algorithms in most of these studies are based on struc-
tural design models. Such models, although sufficient for
preliminary or conceptional design, are not acceptable for
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detailed design analysis. Careless grid sensitivity evaluations
would introduce gradient errors within the sensitivity module,
therefore, infecting the overall optimization process. The de-
velopment of an efficient and reliable grid sensitivity module
with special emphasis on aerodynamic applications appears
essential.

Among two major classes of grid generation systems (al-
gebraic and differential), algebraic grid generation systems
are ideally suited for achieving this objective. The explicit
formulation, resulting in a fast and suitable grid, enables direct
differentiation of grid coordinates with respect to design pa-
rameters.** The underlying effort here is to avoid the time-
consuming and costly numerical differentiation. In addition,
the analytical derivatives are exact, a desirable feature for
sensitivity analysis. An important ingredient of grid sensitivity
is the surface parameterization. The most general parame-
terization would be to specify every grid point on the surface
as a design parameter. This, although convenient, is unac-
ceptable due to high computational cost. It is essential to keep
the number of parameters as low as possible to avoid a surge
on computational expenses. An analytical parameterization
may alleviate that problem, but it suffers from lack of gen-
erality. A compromise would be to use spline functions such
as a Bezier or B-spline function to represent the surface. In
this manner, most aerodynamically inclined surfaces can be
represented with only a few control (design) parameters.

II. Surface Modeling and Grid Generation

Among many ideas proposed for generating any arbitrary
surface, the approximative techniques of using spline func-
tions are gaining a wide range of popularity. The most com-
monly used approximative representation is the non-uniform
rational B-Spline (NURBS) functions. They provide a pow-
erful geometric tool for representing both analytic shapes
(conics, quadrics, surfaces of revolution, etc.) and free-form
surfaces.® The surface is influenced by a set of control points
and weights where, unlike interpolating schemes, the control
points might not be at the surface itself. By changing the
control points and corresponding weights the designer can
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influence the surface with a great degree of flexibility without
compromising the accuracy of the design. The relation for a
NURBS curve is

X(r)= > R, (ND, i=0,...,n (1)
=0
Ni 2 ¥ i
R, (r) = —L)w
;) Ni‘[)(r)w[

where X(r) is the vector-valued surface coordinate in the r
direction, D, are the control points (forming a control poly-
gon), w, are weights, N, (r) are the pth degree B-spline basis
function, and R, ,(r) are known as the rational basis functions.

Figure 1 illustrates a seven control point representation of
a generic airfoil. The points at the leading and trailing edges
are fixed. Two control points at the 0% chord are used to
affect the bluntness of the section. A similar procedure can
be applied to other airfoil geometries such as NACA four-
or five-digit series. The choice for a number of control points
and their locations are best determined using an inverse B-
spline interpolation of the initial data.® The algorithm yields
a system of linear equations with a positive and banded coef-
ficient matrix. Therefore, it can be solved safely using tech-
niques such as Gaussian elimination without pivoting. The
procedure can be easily extended to cross-sectional configu-
rations, when critical cross sections are defined by several
circular conic sections and the intermediate surfaces have been
generated using linear interpolation as shown in Fig. 2. In-
creasing the weights would deform the circular segments to
other conic segments (elliptic, parabolic, etc.) as desired for
different flight regions. In this manner the number of design
parameters can be kept to a minimum, which is an important
factor in reducing the optimization costs.

The algebraic grid generation system, used in this study, is
an explicit mathematical expression of a physical domain as
a function of a computational domain. A methodology based
on separating the boundary definition from the interior def-
inition is established. The interior is then defined as a function
of information on the boundaries such as position, surface
derivatives, and an independent variable. An example of such
formulation with first-order surface derivatives is called the
two-boundary grid generation (TBGG) technique.” This
matches both the function and its derivative at the boundaries.
Figure 3 illustrates the resultant sample grid for the airfoil
geometry using this technique.
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Fig. 1 Seven control point representation of a generic airfoil.
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Fig. 2 Critical fuselage cross sections.
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Fig. 3 Sample C-type grid.

III. Flow Analysis and Sensitivity Equation

A. Analysis

The two-dimensional thin-layer Navier—Stokes equations
can be represented as

p
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Here, R is the residual and J is the transformation Jacobian
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The residual R can be expressed in generalized curvilinear

coordinates (&, ) as
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where F and G are the inviscid and G, are the viscous fluxes.

The equations are solved in their conservation form using
an upwind cell-centered finite volume formulation. A third-
order accurate upwind biased inviscid flux balance is used in
both streamwise and normal directions. The finite volume
equivalent of second-order accurate central differences is used
for viscous terms. The resulting discretization represents the
residual R(Q) at each cell, depending locally on values of O
at nine neighboring cells such that

RL/’(Q) = Ri‘f(Qi,h Q:,/—l? Qi‘_/+l7 Qi,/—:v Qi,j+27 Qi -1,
Q:+1.]s Qi72‘/‘7 Q:+2\j) (5)

The discretized governing equations are implicitly advanced
in time using the Euler implicit method that is unconditionally
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stable for all time steps according to the Fourier stability
analysis. An iterative approximate factorization (AF) algo-
rithm has been chosen to advance the solution in time until

R(Q*) =0 (6)

where Q* are the steady-state values of the field variables.
The boundary conditions are implicitly implemented within
the governing equations. The airfoils surface is considered to
be impermeable and adiabatic. A standard no-slip boundary
condition with zero surface velocity has been selected. The
pressure at the surface is evaluated using a zeroth-order ex-
trapolation from the interior cells. The density is then cal-
culated using the state equation.

B. Sensitivity

For a steady-state solution (i.e., t — ), Eq. (6) is reduced
to

R[Q*(P), X(P),P] = 0 ™)

where the explicit dependency of R on grid and vector of
parameters P is evident. The parameters P control the grid
X as well as the solution Q*. The fundamental sensitivity
equation containing {3Q*/3P} and described by Taylor et al.2
is obtained by the direct differentiation of Eq. (7) as

oR a0 * OR X
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It is important to notice that Eq. (8) is a set of linear algebraic
equations and the matrices [dR/0Q] and [dR/6X] are well
understood. The vector quantity {0Q */oP} is the solution to

Eq. (8) given the sensitivity of the grid with respect to the
parameters {dX/0P}. A direct chain rule differentiation of {6.X/

dP} results in
axX ox | (ax,
) - [aﬂ ] ©

where X, designates the boundary coordinates. The vector
{0X ;/0P} represents the boundary sensitivity that is directly
related to boundary parameterization, discussed previously.
It has the importance of being one of the dominant factors
in calculating the sensitivity of surface forces needed for the
optimization process. The matrix [0X/dX ] is responsible for
field grid sensitivity with respect to boundary coordinates and
it is related to the rules that govern the grid generation al-
gorithm. For algebraic generation systems, the primary com-
ponents of [0X/3X ;] are the interpolation functions that dis-
tribute the interior grid.

The sensitivity of the grid with respect to the vector of
design parameters X, = {X,, Y;, w;}7 can be obtained by
direct differentiation of the grid equations.® As a consequence
of using an algebraic grid generation technique in which the
boundary grid has the dominant effect on the interior grid,
the boundary grid sensitivity coefficient would also be essen-
tial in influencing the interior grid sensitivity coefficient.
Therefore, evaluation of the surface grid sensitivity coeffi-
cients are the most important part of the analysis and are
directly dependent on the surface parameterization. For prac-
tical purposes, the grid sensitivity and orthogonality at the
far-field boundary has been ignored.

The flow sensitivity coefficient {3Q*/dP} can now be directly
obtained using the fundamental sensitivity equation [Eq. (8)]

as
00t) _ _[aR]" [aR] fax
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provided that grid sensitivity {0X/dP} is known. The Jacobian
matrix [#R/d.X | can be evaluated by differentiating the discrete
residuals R;; with respect to four vertices of each cell. The
quantity [0R/0Q]~' can be obtained using a full matrix solver
to account for all the nonzero contributions outside of the
central bandwidth. This, although convenient, is not practical
for Navier—Stokes equations due to large storage require-
ments. An alternative would be the use of a hybrid direct
solver with conventional relaxation strategy.?

C. Optimization

An objective of a multidisciplinary optimization of a vehicle
design is to extremize a payoff function combining dependent
parameters from several disciplines. Most optimization tech-
niques require the sensitivity of the payoff function with re-
spect to free parameters of the system. For a fixed grid and
solution conditions, the only free parameters are the surface
design parameters. Therefore, the sensitivity of the payoff
function with respect to design parameters is needed. The
optimization problem is based on the method of feasible di-
rections and the generalized reduced gradient method.? This
method has the advantage of progressing rapidly to a near-
optimum design with only gradient information of the objec-
tive and constrained functions required. The problem can be
defined as finding the vector of design parameters X, which
will minimize the objective function f(X,) subjected to con-
straints

8(Xp) =0 j=1m (11)
X, =X, =X (12)

where superscripts denote the upper and lower bounds for
each design parameter. The optimization process proceeds
iteratively as

Xy = X5+ y8” (13)

where # is the iteration number, S$” is the vector of search
direction, and vy is a scalar move parameter. The first step is
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Fig. 4 Optimization strategy loop.
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to determine a feasible search direction §” and then perform
a one-dimensional search in this direction to reduce the ob-
jective function as much as possible, subject to the constraints.

The present optimization strategy is based on maximizing
the lift coefficient C, in response to surface perturbation,
subject to predetermined design constraints. Upper and lower
bounds set for each design parameter and the sensitivity de-
rivatives of the objective function dC, /aX, and the constraint
dC /X, are obtained as previously described.?* Throughout
the analysis, the drag coefficient C,, is to be no greater than
the value of the initial design. The strategy, illustrated in Fig.
4, requires that the grid and grid sensitivity derivatives be
provided dynamically during the automated optimization pro-
cess.

IV. Results and Discussion
A. Grid Sensitivity

The grid sensitivity of a generic airfoil with respect to design
parameters using the NURBS parameterization is discussed
in this section. The geometry, as shown in Fig. 1, has seven
prespecified control points. The control points are numbered
counter-clockwise starting and ending with control points (0
and 6) assigned to the tail of the airfoil. A total of 21 design
parameters (i.e., three design parameters per control point)
are available for optimization purposes. Depending on de-
sired accuracy and degree of freedom for optimization, the
number of design parameters could be reduced for each par-
ticular problem. For the present case, such a reduction is
achieved by considering fixed weights and chord length. Out
of the remaining four control points with two degrees of free-
dom for each, control points 1 and 5 have been chosen as a
case study. The number of design parameters is now reduced
to four with X,, = {X|, Y, X;, Y5}7, with initial values spec-
ified in Fig. 1. The nonzero contribution to the surface grid
sensitivity coefficients of these control points are the basis
functions R, ;(r) and R (r). Figure § illustrates the field-grid
sensitivity with respect to design parameter Y, when the far-
field boundary is placed one chord-length away from the sur-
face. The sensitivity gradients are restricted only to the region
influenced by the elected control point. This locality feature
of the NURBS parameterization makes it a desirable tool for
complex design and optimization when only a local pertur-
bation of the geometry is warranted. Similar results can be
obtained for design control point 5 where the sensitivity gra-
dients are restricted to the lower portion of the domain.

B. Flow Sensitivity and Optimization

The second phase of the problem is obtaining the flow
sensitivity coefficients using the previously obtained grid sen-
sitivity coefficients. In order to achieve this, according to Eq.
(8), a converged flowfield solution about a fixed design point
should be obtained. The computation is performed on a C-
type grid composed of 141 points in the streamwise direction,
with 101 points on the airfoil surface, and 31 points in the
normal direction. The far field and outer boundary were placed
about 20 chord lengths away from the airfoils. It is apparent
that such a coarse grid is inadequate for capturing the full
physics of the viscous flow over an airfoil. Therefore, it should
be understood that the main objective here is not to produce
a highly accurate flowfield solution, but rather to demonstrate
the feasibility of the approach.

The two-dimensional, compressible, thin-layer Navier—Stokes
equations are solved for a freestream Mach number of M., =
0.7, Reynolds number Re. = 10°, and angle of attack @ = 0
deg. The solution is implicitly advanced in time using local
time stepping as a means of promoting convergence toward
the steady state. The residual is reduced by 10 orders of mag-
nitude. All computations are performed on NASA Langley’s
Cray-2 mainframe with a computation cost of 0.1209 x 103
CPU seconds/iteration/grid point. Figure 6 demonstrates the

1237

0.556071
0.514196
0.472322
0.430447
0.388573
0.346698
0.304824
0.262949
0.221075
0.1792
0.137326
0.095451
0.053576
0.011702
-0.030172

SN ANINGOPTOOMT

Fig. 5 Grid sensitivity with respect to Y,: a) Y and b) X coordinates.
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Fig. 6 Mach number contours (@ = 0, M., = 0.7).

Mach number contours of the converged solution with the lift
and drag coefficients of C, = 0.402 and C,, = 0.063. Due to
surface curvature, the flow accelerates along the upper surface
to supersonic speeds, terminated by a weak shock wave be-
hind which it becomes subsonic. The sensitivity coefficient
{8Q*/0T} is obtained by previously described iterative strat-
egy.> The average relative error has been reduced by three
orders of magnitude. The sensitivities of the aerodynamic
forces, such as drag and lift coefficients with respect to design
parameters {X|, Y,, X, Y5}, are obtained and the results are
presented in Table 1. An inspection of Table 1 indicates the
substantial influence of parameters Y, and Y5 on the aero-
dynamic forces acting on the surface. The upper and lower
bounds for these design parameters are assigned as

02=X, =07, -01=<Y =05

02=X.=07,  —-01=<Y,=<02
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Table 1 Aerodynamic sensitivity coefficients

Direct differentiation

Generic wi . ac, ac,,
eneric wing-section et A %n
design parameters X, X
X, -0.297 —3.63 x 1072
Y, -5.107 0.549
X 0.15 —2.04 x 10-2
Y. 2.609 0.287

Table 2 Comparison of initial and optimized
performance variables

Performance Initial Optimum Percent
variables design design change
C,. 0.402 0.845 +110.1
Cp 0.063 0.043 -31.7
Lift/drag ratio 6.38 19.65 +208

Table 3 Comparison of initial and optimized
design parameters

Design Initial Optimum Percent
parameters design design change
X, 0.5 0.374 —25.2
Y, 0.2 0.134 -33
X 0.5 0.414 —17.2
Ys 0.05 0.069 +38

The optimum design is achieved after 17 optimization cycles
and a total of 8807 Cray-2 CPU seconds. These high com-
putational costs make minimizing the number of design pa-
rameters in optimization cycle essential. Table 2 highlights
the initial and final values of lift and drag coefficients with a
208% improvement in their ratio. Table 3 represents the initial
and optimum design parameters with parameters Y, and Y5
having the largest change as expected. The history of design
parameters deformation during the optimization cycles ap-
pears in Fig. 7, where the oscillatory nature of design per-
turbations during the early cycles are clearly visible. Figure
8 compares the original and optimum geometry of the airfoil.

Several observations should be made at this point. Al-
though control points 1 and 5 were demonstrated to have a
substantial influence on the design of the airfoil, they are not
the only control points affecting the design. In fact, control
points 2 and 4 near the nose might have a greater affect due
to the sensitive nature of lift and drag forces on this region.
The choice of control points 1 and 5 here was largely based
on their camber-like behavior. A complete design and opti-
mization should include all the relevant control points (e.g.,
control points 1, 2, 4, and 5). For geometries with a large
number of control points, in order to contain the computa-
tional costs within a reasonable range, a criteria for selecting
the most influential control points for optimization purposes
should be established. This decision could be based on the
already known sensitivity coefficients, where control points
having the largest coefficients could be chosen as design pa-
rameters. Secondly, the optimum airfoil of Fig. 8 is only valid
for this particular example and design range. As a direct con-
sequence of the nonlinear nature of governing equations and
their sensitivity coefficients, the validity of this optimum de-
sign would be restricted to a very small range of the original
design parameters. The best estimate for this range would be
the finite difference step size used to confirm the sensitivity
coefficients (i.e., 103 or less). All the airfoils with the original
control points within this range should conform to the opti-
mum design of Fig. 8, while keeping the grid and flow con-
ditions fixed.
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Fig. 8 Original and optimized airfoils.

V. Conclusions and Recommendations

An algorithm is developed to obtain the grid sensitivity with
respect to design parameters for aerodynamic optimization.
The algebraic two-boundary grid generation (TBGG) scheme
has been directly differentiated with respect to design param-
eters. This formulation has the benefits of being exact, effi-
cient, and inexpensive. The airfoil is defined geometrically
using the NURBS approximation of the surface. A substantial
increase in aerodynamic performance variables enforces the
feasibility of this approach for high-level design and optimi-
zation.

It is evident that grid sensitivity plays a significant role in
the aerodynamic optimization process. The algebraic grid gen-
eration scheme presented here is intended to demonstrate the
elements involved in obtaining the grid sensitivity from an
algebraic grid generation system. Each grid generation for-
mulation requires considerable analytical differentiation with
respect to parameters that control the boundaries as well as
the interior grid. It is implied that aerodynamic surfaces, such
as the airfoil considered here, should be parameterized in
terms of design parameters. Due to the high cost of the aero-
dynamic optimization process, it is imperative to keep the
number of design parameters as low as possible. Analytical
parameterization, although facilitating this notion, has the
disadvantage of being restricted to simple geometries. A geo-
metric parameterization such as NURBS, with local sensitiv-
ity, has been advocated for more complex geometries.

Future investigations should include the implementation of
the present approach using larger grid dimensions, adequate
to resolve full physics of viscous flow analysis. A grid opti-
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mization mechanism based on-grid sensitivity coetficients with
respect to grid parameters should be included in the overall
optimization process. An optimized grid applied to the pres-
ent geometry should increase the quality and convergence rate
of flow analysis within optimization cycles. Other directions
could be establishing a link between geometric design param-
eters (e.g., control points and weights) and basic physical
design parameters (e.g., camber and thickness). This would
provide a consistent model throughout the analysis that could
easily be modified for optimization. Also, the effects of in-
cluding all the relevant control points on the design cycles
should be investigated. Another contribution would be the
extension of the current algorithm to three-dimensional space
for complex applications. For three-dimensional applications,
even a geometric parameterization of a complete aerodynamic
surface can require a large number of parameters for its def-
inition. A hybrid approach can be selected when certain sec-
tions or skeleton parts of a surface are specified with NURBS
and interpolation formulas are used for intermediate surfaces.
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